Figure 1. Causal pathway

Figure 2. Minimum number of AEDs: different patient types

^{* &}quot;>1" indicates that the study used a nonspecific term such as "several"

Figure 3. Minimum number of AEDs: different treatments

 $^{^{\}star}$ ">1" indicates that the study used a nonspecific term such as "several"

Figure 4. Minimum baseline seizure frequency: different patient types

Figure 5. Minimum baseline se izure frequency: different treatments

Figure 6. Prevalence of nonepileptic seizures

Prevalence of nonepileptic seizures among patients diagnosed with treatmentresistant epilepsy

NES: Non-epileptic seizure ES: Epileptic seizure

Figure 7. Blood prolactin: discrimination between epileptic and syncopal seizures

Figure 8. Differences in threshold when evaluating test performance in studies of blood prolactin measurement

Figure 9. Blood prolactin: discrimination between epileptic and psychogenic seizures

Figure 10. Blood prolactin: discrimination between different epileptic seizure types and psychogenic seizures

Data abstracted from Mishra (1990), GTCS: Generalized tonic -clonic seizures, CPS: Complex partial seizures, SPS: Simple partial seizures

Figure 11. Threshold analysis: sequential monotherapy and seizure freedom

Figure 12. Threshold analysis: monotherapy and seizure freedom (long-term studies)

Figure 13. Threshold analysis: monotherapy and doubling of monthly seizure frequency

Figure 14. Threshold analysis: monotherapy and doubling of two-day seizure frequency

Figure 15. Threshold analysis: monotherapy and trial exits due to adverse effects

Percentage of Patients in a Synthetic Control Group Who Exited Due To Adverse Effects

Figure 16. Median percentage reduction in seizures after polytherapy

Note: In this plot, positive numbers represent reductions in seizures, whereas negative numbers represent increases in seizures.

Figure 17. Forest plot: polytherapy and seizure-freedom (high-dose)

Figure 18. Forest plot: polytherapy and seizure-freedom (low-dose)

Figure 19. Forest plot: polytherapy and 50 percent seizure reduction (high-dose)

Figure 20. Forest plot: polytherapy and 50 percent seizure reduction (low-dose)

Figure 21. Forest plot: polytherapy and any seizure reduction (high-dose)

Figure 22. Forest plot: polytherapy and any seizure reduction (low-dose)

Figure 23. Forest plot: polytherapy and any seizure increase (high-dose)

Figure 24. Forest plot: polytherapy and any s eizure increase (low-dose)

Figure 25. Forest plot: polytherapy and trial exits due to adverse effects (high-dose)

Figure 27. Tradeoff between seizure frequency and adverse effects

Figure 28. Increase in seizure frequency and drug reduction strategies

Percentage presented in parentheses is the actual proportion of patients with seizure frequencies greater than the percent increase in seizure frequency shown on the X-axis. The diamond and error bars represent the effect size and 95% CI.

Figure 29. Drug reduction strategies and tests of concentration/attention

May (1992) 121

Duncan (1990)122

Thompson (1982)¹²⁶

FCCT Frankfurt Concentration Test for Children

LCT PHT Letter cancellation task Phenytoin vs. Control Carbamezapine vs. Control Valprioc acid vs. Control CBZ VPA d2 T T-F

d-2 test total number minus failures

d2 Test Q ST VSS d-2 test failure quotient

Stroop Test Visual scanning speed

Figure 30. Drug reduction strategies and the Frankfurt Concentration Test for Children

Pre- and posttreatment Frankfurt Concentration Test for Children data from May (1992)¹²¹

Figure 31. Drug reduction strategies and tests of memory

May (1992) 121

Duncan (1990)122

Thompson (1982)¹²⁶

Abbreviations:

LGT Lern- und Gedachtnis Test
DSF Digit scan forwards
DSB Digit scan backwards
PHT Phenytoin vs. Control
CBZ Carbamezapine vs. Control
IR Immediate recall
DR Delayed recall
R Recognition

Deleted: <sp>

Figure 32. Drug reduction strategies and digital scanning score

Data from Duncan (1990)¹²² showing effects of valprioc acid removal on digital scanning score

Figure 33. Drug reduction strategies and tests of psychomotor function

May (1992) 121

Duncan (1990)122

Thompson (1982)¹²⁶

FT Finger tapping
DH Dominant hand
NDH Non-dominant hand
PB Pegboard
PRF Pursuit Rotor Failure
PFD Pursuit Failure Duration
PHT Phenytoin vs. Control
CBZ Carbamezapine vs. Control
VPA Valprioc acid vs. Control

Figure 34. Drug reduction strategies and psychomotor function

Pre-and posttreatment psychomotor function data presented by May (1992) 121

Finger tapping with dominant hand

Pursuit rotor failure of dominant hand

Figure 35. Forest plot: temporal lobe surgery and seizure-free with no auras

Figure 36. Threshold analysis: temporal lobe surgery and seizure-free with no auras

Figure 37. Forest plot: temporal lobe surgery and seizure-free with auras

A scale is not shown because the effect sizes were not calculated with actual control groups MTS = Patients with mesial temporal sclerosis

Figure 38. Threshold analysis: temporal lobe surgery and seizure-free with auras

Figure 39. Forest plot: temporal lobe surgery and Engel Class I

Figure 40. Meta-regression: temporal lobe surgery and Engel class I

Figure 41. Forest plot: temporal lobe surgery and seizure-free undefined

Figure 42. Meta-regression: temporal lobe surgery and seizure-free undefined

Figure 43. Forest plot: temporal lobe surgery and patient age at surgery

Figure 44. Forest plot: temporal lobe surgery and patient age at onset of seizures

Figure 45. Forest plot: temporal lobe surgery and duration of epilepsy prior to surgery

Figure 46. Forest plot: temporal lobe surgery and male and female patients

Studies reported the success of surgery among male and female patients

Figure 47. Meta-regression: temporal lobe surgery and male and female patients

Figure 48. Forest plot: temporal lobe surgery and location of surgery

Studies reported the success of surgery among patients with left side and right side surgery

Figure 49. Forest plot: temporal lobe surgery and simple partial seizures

Studies reported the success of surgery in patients with and without simple partial seizures (SPS)

Figure 50. Forest plot: temporal lobe surgery and secondarily generalized seizures

Studies reported the success of surgery among patients with and without secondarily generalized seizures (SGS)

 $MTS = Patients \ with \ mesial \ temporal \ sclerosis$

Figure 52. Forest plot: temporal lobe surgery and new cases of depression

Figure 53. Meta-regression: temporal lobe surgery and new cases of depression

Figure 54. Forest plot: temporal lobe surgery and new cases of psychosis

Figure 55. Threshold analysis: temporal lobe surgery and new cases of psychosis

Figure 56. Forest plot: temporal lobe surgery and decreases in IQ after surgery

Studies reported individuals with significant decreases in IQ after surgery

Figure 57. Threshold analysis: temporal lobe surgery and decreases in IQ after surgery

Figure 58. Forest plot: temporal lobe surgery and increases in IQ after surgery

Studies reported individuals with significant increases in IQ after surgery

Figure 59. Threshold analysis: temporal lobe surgery and increases in IQ after surgery

Figure 60. Forest plot: temporal lobe surgery and changes in mean IQ

Studies reported both presurgery and postsurgery mean IQ

Figure 61. Temporal lobe surgery: changes in memory after surgery

Studies reported individuals with significant changes in memory after surgery

Figure 62. Forest plot: temporal lobe surgery and changes in memory Decreases in memory scores

A scale is not shown because the effect sizes were not calculated with actual control groups ${\it lncreases}$ in ${\it memory}$ ${\it score}$.

Figure 63. Forest plot: corpus callosotomy and reduction in seizure frequency

Studies reported patients with at least a 90 percent reduction in seizure frequency after surgery

Figure 64. Threshold analysis: corpus callosotomy and reduction in seizure frequency

Figure 65. Forest plot: corpus callosotomy and no benefit from surgery

Studies reported patients who had no change or an increase in seizure frequency

Figure 66. Forest plot: corpus callosotomy and patient age at surgery

Figure 67. Forest plot: corpus callosotomy and patient age at onset of seizures

Figure 68. Forest plot: corpus callosotomy and duration of epilepsy prior to surgery

Figure 69. Forest plot: corpus callosotomy and most disabling seizures

Studies reported patients who were free of their most disabling seizures

Figure 70. Threshold analysis: corpus callosotomy and most disabling seizures

Figure 71. Forest plot: corpus callosotomy and generalized tonic-clonic seizures

Studies reported patients who were free of generalized tonic-clonic seizures

Figure 72. Meta-regression: corpus callosotomy and generalized tonic-clonic seizures

Figure 73. Threshold analysis: corpus callosotomy and generalized tonic-clonic seizures

Figure 74. Forest plot: corpus callosotomy and atonic seizures

Studies reported patients who were free of atonic seizures

Figure 75. Threshold analysis: corpus callosotomy and atonic seizures

Figure 76. Forest plot: frontal lobe surgery and seizure-free (undefined)

Studies reported patients who were seizure-free undefined

Figure 77. Meta-regression: frontal lobe surgery and seizure-free (undefined)

Figure 78. Forest plot: hemispherectomy and seizure-free outcomes

Figure 79. Forest plot: multiple subpial transection and seizure-free outcomes

Figure 80. Forest plot: multiple subpial transection and patient age at surgery

Figure 81. Forest plot: multiple subpial transection and male and female patients

Studies reported the success of surgery among male and female patients

Figure 82. Meta-regression: vagal nerve stimulation and percentage change in seizure frequency

Figure 83. Standardized mortality ratios for overall mortality

^{*}Studies conducted in the United States

Figure 84. Standardized mortality ratios for age-specific mortality

^{*}Approximate SMRs for this study calculated by ECRI

Figure 85. Risk of SUDEP with increasing seizure frequency

^{*}The study by Nilsson, Farahmand, Persson et al. 374 reported relative risks rather than odds ratios.

Figure 86. Risk of SUDEP in patients with tonic-clonic seizures

Figure 87. Risk of SUDEP in patients with generalized seizures (primary and/or secondary)

^{*}The study by Nilsson, Farahmand, Persson et al. 374 reported relative risks rather than odds ratios.